If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+5k-4=0
a = 3; b = 5; c = -4;
Δ = b2-4ac
Δ = 52-4·3·(-4)
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{73}}{2*3}=\frac{-5-\sqrt{73}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{73}}{2*3}=\frac{-5+\sqrt{73}}{6} $
| m=15/8 | | 2-6(m+1)=4(2-3m)=6 | | 32^x+4=64^2x−1 | | -2(t+4)=-(t-10) | | y-4=3y-20 | | 10x=9x-16+7(x-3)-4(4+11x) | | x^2-130x+2704=0 | | x3-11x2+18x=0 | | -2y+23=-5(y+7)+34 | | m=3/8×4 | | 17x-3=(7x+3) | | 15x2+70x-25=0 | | 3+4+4+×15=x | | 3(2t-1)=7t1 | | 12x^2-27x+12=0 | | 4x^2+8x-1=4 | | y=-3=8 | | 21=5+33t-16^2 | | 8(p+18.00)=98.00 | | 8(p+$18.00)=$98.00 | | 2(T+7)=5t+7 | | 8p+18p=98.00 | | 8p+18.00=98.00 | | (x+3)+4x=13 | | m/4+2=9 | | x^2-85x+400=0 | | 1.5(y-4)=4.4-y | | 8(4x-4)=-5x-32+37x | | 80+2x+27+2x-11=180 | | 3x/2=175 | | 4k^2-28+49=0 | | 2x=2/x^2 |